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SELF-GUIDING AND STABILITY OF INTENSE
OPTICAL BEAMS IN GASES UNDERGOING IONIZATION

I. Introduction

The propagation of optical pulses in gases is relevant to a wide range
of applications, such as ultra-broadband optical generators,l’2 optical
harmonic generators,3’4 X-ray lasers,5 and laser-driven accelerators6'12.
For these applications it is necessary that the optical pulse be intense
and propagate extended distances. In the absence of an optical guiding
mechanism the propagation distance is limited to approximately a Rayleigh
(diffraction) length. At sufficiently high power and intensity the
propagation distance is strongly affected by nonlinear self-focusing and
jonization (plasma generation).

An optical beam propagating in a neutral gas is affected by
diffraction, refraction, nonlinear self-focusing, ionization, and plasma
defocusing. Self-focusing, for example, is due to the intensity dependent
part of the refractive index and occurs when the optical power is above the

13-16

nonlinear focusing pover. As the beam focuses, the increased

intensity results in ionization and plasma formation which tends to defocus

9’17'21, see Fig. 1. A balance between the nonlinear

the optical beam
focusing and plasma defocusing can result in a self-guided optical beam.
In this paper the propagation, self-guiding, and stability of two
types of optical beams are analyzed. The two beams considered are a
fundamental Gaussian beam of the form Eoexp(—rz/ri + iw)éx/z + c.c. and a

2

higher-order radially-polarized beam of the form Eo(Jff/rs)exp(—rz/rs +

iw)ér/2 + c.c., where Eo is the electric field amplitude, r is the spot
size and y is the phase. The results of this paper include (1) envelope
equations describing the evolution of the optical beam spot size, which are

22,23

derived by using the source-dependent expansion method, (2) the

critical power for nonlinear self-focusing of the higher-order mode, which
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is four times greater than that of the fundamental Gaussian, (3) self-
guided beam solutions, which result from a balance of nonlinear self-
focusing and plasma defocusing, (4) the analysis of a new ionization-
modulation instability, which disrupts self-guided beams, (5) the evolution
of the optical beam phase velocity, which is less than the speed of light
for a self-guided beam, and (6) a new configuration of an inverse Cherenkov
accelerator, which is based on a self-guided, radially-polarized, higher-
order Gaussian beam.

One important application of intense optical pulses propagating in
gases is laser-driven electron accelerators, which are referred to as

6-9 In the conventional ICA,G'8 the

inverse Cherenkov accelerators (ICAs).
optical beam driver can consist of either a radially-polarized i) higher-
order Gaussian mode or ii) a nonideal first-order Bessel mode. Associated
with these modes is an accelerating axial field peaked along the
propagation direction (z-axis). In general, the electron acceleration
distance is limited by either the diffraction distance or the electron
slippage distance. Since the optical beam in the ICA propagates in gas,
the phase velocity can be less than the speed of light and controlled by
varying the gas density. Electron slippage is minimized by matching the
electron velocity to the phase velocity of the accelerating field. The
acceleration distance, however, is still limited by the diffraction length.
For a higher-order Gaussian mode the diffraction length is a Rayleigh
length which is precisely the slippage distance in vacuum. In this case,
as far as energy gain is concerned, there is essentially no advantage in
introducing a gas since the effective acceleration length is limited to
approximately a Rayleigh length as discussed in Sec. V. For a fixed total

optical beam power, however, the energy gain in the conventional ICA can be




significantly increased by using a nonideal Bessel beam, as discussed in
Appendix D. To further enhance the energy gain, the ICA requires self-

6-8 of the ICA also

guiding of the optical driver.9 Previous studies
neglect the intensity dependent effects in the refractive index, i.e.,
nonlinear self-focusing, as well as ionization, i.e., plasma effects. Ve
propose and analyze a self-guided ICA configuration that operates at laser
povers near the nonlinear self-focusing power and at intensities high
enough to slightly ionize the gas.

Another possible application of intense optical beams in gases is the

1,2 3,4

generation of ultra-broadband or harmonic radiation. A short pulse

opticél beam propagating in a nonlinear medium will, among other things,

13-16 vhich results in frequency broadening.

undergo self-phase modulation
Since the degree of frequency broadening increases with both propagation
distance and optical intensity, the self-guiding of a short optical beam
may be well suited for ultra-broadband radiation generation. A self-guided
Gaussian beam may have application to harmonic generation,3’4 since the
propagatioﬁ medium consists mainly of a neutral gas and a very narrow
plasma column along the axis. The harmonics could be guided by the driving
optical beam and phase matching may be achieved by introducing a background
plasma.

This paper is organized as follows. The propagation model is
presented in Sec. II, and includes discussions of the wave equation in a
gas undergoing ionization, the linear and nonlinear polarization, plasma
generation, the reduced wave equation, photo-ionization, the solution of
the wave equation using the source dependent expansion method, and the

resulting equations describing the evolution of the envelope, amplitude,

and phase of the optical beam. The propagation of a fundamental Gaussian



beam is examined analytically and numerically in Sec. III, including thev
envelope equation, self-guided solutions, and the stability, i.e., the
jonization-modulation instability. Numerical results on the propagation of
the fundamental Gaussian beam are also presented in Sec. III. The
propagation of a higher-order radially-polarized beam is analyzed in Sec.
IV, including the envelope equation, self-guided solutions, and the
stability. Numerical results on the propagation of the higher-order
radially-polarized beam are also presented in Sec. IV. The analysis of a
self-guided inverse Cherenkov accelerator is presented in Sec. V.
Attenuation of the optical beam due to electron collisions and ionization
losses is analyzed in Sec. VI. Section VII contains a discussion and
summary. This paper also includes three Appendices discussing (A) photo-
jonization rates, (B) electron collision frequencies, (C) radiative and
collision losses on accelerated electrons, and (D) inverse Cherenkov

acceleration with Bessel (axicon) beams.

II. Propagation Model

The propagation of intense optical beams in gases is affected by a
combination of diffraction, refraction, and ionization. The refractive
index of a gas generally has an intensity dependent part,13'16 n=n +
nzI, where n, is the linear refractive index, n, is the nonlinear
refractive index and I is the intensity of the optical beam. Generally, n,
is positive and results in self-focusing of the optical beam if the power
is greater than the nonlinear focusing power. The nonlinear focusing
(critical) power for a fundamental Gaussian beam13_16 is PNG = Xz/(2nnon2),

where X\ is the vacuum wavelength. As the beam self-focuses the peak

intensity increases resulting in ionization and the generation of a plasma.



In the region of the plasma the refractive index is n(r) = n, o+ n21 -
wﬁ(r)/sz, where wp = (tutqznp/m)l/2 is the plasma frequency, np is the
plasma density, and @ = 2nc/X is the frequency of the optical beam. The
local decrease in the refractive index due to the plasma tends to defocus

the optical beam.9’17_21

If diffraction, self-focusing due to n, and
defocusing due to plasma generation are properly balanced, a self-guided
optical beam can be formed and propagated over extended distances, i.e.,
many vacuum Rayleigh lengths.g’zo’21
Our propagation model includes a number of assumptions. The short
pulse optical beam is assumed to be adequately described by a single source
dependent Laguerre-Gaussian mode, which is a superposition of many vacuum
Laguerre-Gaussian modes. The model is not valid when the optical power
greatly exceeds the nonlinear focusing power, since the beam is expected to
filament into higher-order modes. Ionization is considered in the high

field 1imit24-28

(Keldysh parameter less than unity) and is modeled by the
tunneling ionization rate, see Appendix A; The attenuation of the optical
beam due t6 ionization and collisional losses is estimated and found to be
small enough to neglect. The nonlinear polarization field of the gas is

included to third order.in the optical field whereas the plasma current is

included to first order.

A. Vave Equation in Gas Undergoing Ionization
The dynamics of optical beams propagating in a gas undergoing

ionization is governed by the wave equation,
(7 - 7 2a%/0tP)E = ane(3Pprat? 4 2y sav), (1)

vhere E is the electric field of the optical beam, V2 = Vf + 32/322, z is

the axial propagation direction, P is the polarization field associated




with the gas and ip is the plasma current density associated with the
jonized gas. In obtaining Eq. (1) we have neglected a small source term

proportional to the gradient of the plasma density.

1. Linear and Nonlinear Polarization

The polarization field can arise from a number of processes; these
include electronic polarization, molecular orientation, eiectrostriction,
saturated absorption and thermal effects.lS—l6 In the present paper we
will be concerned with changing the refractive index on a fast time scale,
typically less than 10_12 sec. On this time scale the electronic
polarization is the dominant contribution to the nonlinear refractive index

and is due to the optical field modifying the atomic electronic

distribution.

In the simple Lorentz mode113-16 of the atom the electrons are assumed

to consist of a charge distribution oscillating in an effective potential.
Nonlinearities in the effective potential result in a field dependent
refractive index for the medium. In the following description of the
polarization field only isotropic matter having ensemble averaged inversion
symmetry, i.e., centrosymmetric ensemble averaged effective potentials,
vill be considered. This includes all liquids, gases, amorphous solids as
well as many crystals.

The electric polarization field is defined by P = qn X, vhere q is
the electronic charge, n, is the density of atoms or molecules and X4 is
the displacement of the electronic distribution from equilibrium due to the
optical field. The polarization field in the classical single resonant

frequency model is given by13-16

2
a2p/at? + 2P - @(R-B/P2)P + 2T3R/3t = (q'n /m)E, (2)



where QR is the characteristic resonant frequency of the electronic
distribution, Ql is a constant associated with the nonlinear, i.e.,
nonparabolic, nature of the effective potential, Pn is a normalizing
polarization field amplitude and T is a damping term. Equation (2) is an
accurate description for the polarization field when the optical frequency
is far from the resonant frequencies. Typically, the resonant frequency QR
is in the ultra violet regime, QR >> w. The polarizatioﬁ field given by
Eq. (2) contains dispersion, damping and third order nonlinear effects.

In the limit vhere i) dispersive effects are weak (far from resonance,
QR >> w), ii) damping effects can be neglected (T << w), and iii) the
nonlinear term in Eq. (2) is small (Qigz/Pi << Qﬁ), the polarization field

can be approximated by

P = X(1)§ + X(3)<E’.'§>§ }
2
= (1/4n)(no -1+ ZnOnZI)g, (3)
where x(l) = qznn/(mgﬁ) << 1 is the constant linear susceptibility, X(3) =

(Ql/QR)z(x(l))3/P§ << X(l)/<§°§> is the constant third order susceptibility

of the neutral gas, the brackets < > denote a time average, n, = 1 +

4nx(1))1/2

is the linear refractive index of the neutfal gas, n, =
(8n2/n§c)x(3) is the nonlinear component of the refractive index, I =

(c/4n)no<§-§> is the intensity and |n21| «Kn, has been assumed.

2. Plasma Generation
The ionization of the background gas by the optical beam results in
the generation of plasma electrons. The plasma current density is given by

lp = qnp!p, where np and gp are the plasma density and fluid velocity




respectively. To lowest order in !p’ the continuity and fluid velocity

equations are

anp/Bt + V°(npgp) =S, (4a)

mnpagp/at = qnp§ - mgpS, (4b)

vhere S is the plasma source term proportional to the ionization rate, E is
the optical electric field, the !p x B force and thermal effects are
neglected in Eq. (4b), and the electrons are assumed to be created with
zero velocity when ionized. Combining Egs. (4a,b), and keeping terms to

lovest order in !p’ the plasma current density is given byzg‘31

3y /3t = (W/4mE, (5)

where wp = (lutqznp/m)l/2 is the electron plasma frequency. The evolution
of the plasma density depends on the photo-ionization rate and is discussed
later. In obtaining Eq. (5) nonlinear and collisional effects, see
Appendix B, have been neglected. Ionization and collisional losses are
analyzed in Sec. VI and found to be small. Nonlinear plasma effects are
small compared to the nonlinear neutral gas effects which are represented
by the term nZI in Eq." (3). The magnitude of nonlinear plasma effects

compared to nonlinear neutral gas effects is approximately given by the

11,32

ratio of the critical power for relativistic focusing to the nonlinear

focusing pover and is found to be negligibly small.

3. Reduced Wave Equation
The propagation of the optical beam is described by Egs. (1), (3) and
(5) together with the tunneling jonization model discussed in Sec. II.B.

To proceed with the analysis, it is convenient to transform from the (z,t)

.



coordinates to the (§,n) coordinates, where § = z - vt and n = z. For a
beam propagating in the positive z direction with group velocity v, & is
the distance behind the front (& = 0) of the optical beam and n is the
propagation distance. In these new coordinates, the optical field has the

form
E = E exp(ik&)/2 + c.c., _ (6)

vhere E(r,6,&,n) is the complex amplitude and is a slowly varying function
of £and n, k = w/v, w = 2nc/X\ is the optical frequency, A\ is the vacuum
wvavelength, and c.c. denotes the complex conjugate. In the (&,n)

coordinates, Eq. (1) can be written in the paraxial approximation as
(7 + 2ika/an)E = K’E, %

wvhere K2 is given by

2 2

2
K = kp - 2k (nzlno)I. (8)

In obtaining Eq. (7) we used the transformations 9/9z = 3/§ + 9/39n and 3/3t
= — v3/3%. The linear group velocity as well as the linear phase velocity
is v = w/k = c/no. The paraxial approximation implies that K2 is small
compared to kz. In the absence of the nonlinear index (n2 = 0), the
paraxial approximation requires that the plasma density be small compared

to the critical density, wi < wz.

B. Photo-Ionization Model

33-35

Ionization can occur by electron collisional processes or by the

intense optical fields directly,zl'_28 i.e., photo-ionization. In the
absence of collisions or for laser pulses short compared to a collision

time, photo-ionization is the dominant process. Photo-ionization can take




place by either tunneling or multi-photon processes, see Appendix A. These

2

regimes are characterized by the Keldysh parameter Yy = (UI/eos)l/ s Where

U; is the ionization energy and € = (1/2)m(q|§|/mw)2 is the electron
oscillation energy. The low field limit (yk > 1) corresponds to the multi-
photon ionization regime, whereas the high field limit (Yk < 1) corresponds

to the tunneling ionization regime.

The evolution of plasma density in Eq. (4a) is given by
an /8t = (n;, - np)W(|§|), (9)

wvhere noo is the initial neutral density, W(lgl) is the ionization rate and

the convection term V-(npgp) is neglected. For a linearly polarized optical

field, the ionization rate in the tunneling limit (Yk < 1) is given byzl'_28

exp [’ 2 @ ey I21),

(10)

WCED = 43/m 20 (" 4y [EDY?

vhere @ = acc/a = 4.1 x 101® sec™! is the characteristic atomic
frequency, op = 1/137 is the fine structure constant, a = 5.3 x 10'9 cm is
the Bohr radius, ﬁI = UI/UH’ UI is the ionization energy in eV, UH = 13.6
eV is the ionization energy of hydrogen, |é| is the magnitude of the

optical field and EH = |q|/a§ = 5.2 GV/cm is the atomic field of hydrogen.

The intensity of a linearly polarized Gaussian optical beam in vacuum, with
6

a peak field equal to EH’ is I = (c/8n)E§ = 3.6 x 101 W/cmz. Equation (9)
assumes that the gas is at most singly ionized. The solution of Eq. (9)
yields

(o]
k§ - k§0[1 - exp(-(no/c) j W(|§|)d£')], (11)
13

10



wvhere we have set 9/9t = —(c/no)a/QE in Eq. (9), & is defined in the region
£ <0, § =0 corresponds to the front of the beam and ckpo = Wy =
(lntqznno/m)l/2 is the plasma frequency associated with the initial neutral

gas density. For low levels of ionization, i.e., np << no o Eq. (11)

reduces to

(o] .
k§ - kio(no/c) [ wclgDar’. (12)

£
The weakly ionized limit is sufficient to describe self-guiding of optical
beams, since it will be shown that in the highly ionized limit np =n
there is no matched beam solution. The expression in Eq. (8) can be

written as

o

K2 = k2 (n_/c) I V(|E])dE - 2k%(n,/n )I. (13)
po' o 2"

£

C. Source Dependent Expansion Method
The following analysis is based on the SDE method developed in Ref.

22. The SDE is a powerful method for solving the paraxial wave equation
for optical beams propagating in nonlinear media. In the SDE method, the
optical beam is expanded in a complete set of source dependent orthogonal
Laguerre-Gaussian functions. These functions are implicitly functions of
the propagation distance, n, through the optical beam parameters, i.e.,
spot size, wavefront curvature, amplitude and phase. The optical beam can
be described by four coupled first order differential equations for the
beam parameters in the variable n. In general, é can be written in terms

of a complete set of Laguerre-Gaussian functions, i.e., source-dependent

modes,

11




) 5 - 2" \pP
- }: (ém’pcos(pe)el " bm,p51n(p9)el)Dm(x), (14)

w3

m,p

vhere m,p = 0,1,2,..., am,p(n)’ bm,p(n) are complex coefficients and are
functions of n, él’ éi denote transverse unit vectors defining the
polarization, DP(X) = XP/2LP()exp(- (1 - iw)X/2), X = 2c2/x2, £ (M) is
real and denotes the spot size, a(h) = kri/(ZRC) is real, Rc is the radius
of curvature associated with the wave front, and Lﬁ is an associated
Laguerre polynomial, e.g., Lg(x) = 1 and Lg(x) =14+ p- X. The
representation in Eq. (14) forms a complete set and can be used to
represent any arbitrary optical beam.

To proceed with the SDE analysis we substitute Eq. (14) into the
paraxial wave equation, Eq. (7), carry out the indicated differential

operations, perform the operation

2n
j (cos(p'e), sin(p'e))de/zn
(o]

on both sides of the equation, multiply both sides by (Dg(x))* and finally

integrate over X from O to =. The algebraic details can be found in Ref.

22. The resulting equation for ag p is
’
(3 A ) imB i( 1)B* iF (15)
an * ®m,p)?n,p ~ ™n-1,p TP %mil,p = 7 m,p’
where
A =t /r_ +i(2m+ p + 1)((1 + o2)/(kr?) - o /r_ + &/2) (16a)
m,p S S s s'7s !
B(N) = - ar /r. - (1 - a2)/(kr2) + /2 - i(i /r - 2a/(kr2)) (16b)
B s s [ s' s s’)?

12



2n ®
[ a0 [ axoxemExem e
(o} o

_ 4 m!
m,p 2nk (m + p)!

F

x (DR(X))"cos(pO)/(1 + & ), (16c)

(o)

Sp p’ is the Kronecker delta, the dot denotes the operator 3/9n, and the
?

asterisk denotes the complex conjugate. The equation for bm p is identical
]

to the one for a_ except in the expression for Fm p’ cos(pO)/(1 + & )
L

pyo0
is replaced with sin(p®). In obtaining Eq. (15) a number of identities

’

associated with Laguerre-Gaussian functions were used, including the

orthogonality relation

-]

[ pPoo@Roortax = (B2 s

n! m,n’
o

Equation (15), together with the definitions in Eqs. (16), describes
the evolution of the various source dependent Laguere-Gaussian modes.
However, Eq. (15) is underdetermined since there are more unknowns than
equations. An additional constraint, i.e., a specification of the function
B(n), is necessary to solve Eq. (15). The individual source dependent
modes in Eq. (14) are functions of the spot size, rs(h), wvavefront radius
of curvature, RC = kri/(Za), amplitude and phase, am,p' Since B(nh) is also
a function of r, and «, the evolution of the source dependent mode is
governed by the particular choice for the function B. For example, if ve
choose B(n) = 0, we recover the conventional vacuum modes. In general,
expansion in terms of the vacuum modes (B = 0) requires many modes to
accurately describe a guided optical beam over distances of many Rayleigh
lengths. A more appropriate choice for B(n) will depend on the particular

problem under consideration and will be discussed later.

13




The dynamics of i) a fundamental Gaussian beam and ii) a higher-order
radially-polarized axially symmetric beam will be considered. The
fundamental Gaussian beam is described by the mode numbers m = 0 and p = 0,
whereas the higher-order radially-polarized axially symmetric beam is
described by the mode numbers m = O and p = 1. The analysis can be
significantly simplified by setting m = O.

In the following, it is assumed that the dynamics of the optical beam
can be adequately described by the behavior of a single source dependent
mode, e.g., the m = 0, p = O mode for the fundamental Gaussian and the m =
0, p = 1 mode for the higher-order beam. In the SDE method, it is assumed
that the coupling to, as well as the amplitude of, the higher-order source
dependent modes are small. In fact, an optimal choice for the function
B(n) can be determined from Eq. (15) by requiring that the higher-order
source dependent modes, i.e., m > 1, are small. Since, for the cases under
consideration, |a0’p| >> 'am,pl for m > 1, it is clear from Eq. (15) (vith

m = 1) that the optimal choice for B is

B=F /ag o (17)

vhere B and F1 p are given by Eq. (16b) and (léc) respectively. With this
’ . }

choice for B, Eq. (15) (with m = 0) yields

[-gﬁ + Ao’p]ao,p L (18)

where A0 p and FO p are given by Egqs. (16). Equations (17) and (18)
?

?
completely determine the evolution of the source dependent optical beam

mode. Substituting Eqs. (16a,b) into Egs. (17) and setting a, p =
?

Eoexp(ieo), where Eo and 60 are real and denote the field amplitude and

phase, we obtain22
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|
6 + (1 + p)[(l + az)/(krz) - ot /r_ 4 &/2] - -G, (19a)

. 2 2 .
ars/rs + (1 -« )/(krs) - o/2 = - H, (19b)
¥ /r - 2a/(ke?) = 0 (19¢)
s ’s s !
E/E +r/r_=0, (194d)
oo s'"s
wvhere G = FO,p/aO,p and H = Fl,p/aO,p are real. The source functions G and

H are given by

-

and K2 is given by Eq. (13).

[y]

1
dx K2<x,n)xpexp<-x>[ ], (20)
1-X/(1+p)

O ¢c——m 8

D. Envelope, Amplitude and Phase of Optical Beam
Equations (19b) and (19c) can be combined to form an envelope equation

for the optical- beam

a’r_son’ - 4(1 + krin)/[kzrz) - 0. (21)

In addition, the amplitude, phase, curvature, and axial phase velocity vph

of the optical beam are given respectively by

3(E_r )/ = 0, (22a)
|
§ 6, = -(1 + p)[2/(kr§) + H] - ¢, (22b)
o = kr2/(2R ) = ki_r /2, (22¢)
and
vop = (1 - éo/k)c/no, . (22d)
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where |6/k| << 1 was assumed in Eq. (22d). Note that Eq. (22a) implies
that the optical power, which is proportional to (Eors)z’ is a conserved
quantity, consistent with the paraxial wave equation vhen K2 is real.

For propagation in vacuum (no = 1) the solution of Egs. (19a-d) yield

15,36

the conventional vacuum modes. In vacuum, the source terms vanish,

ij.e., G = H = 0, and the solutions are characterized by a spot size r, =
2,,2 \1/2

rso(l +nN /ZRO) ’ rSo is the minimum spot size at the focal point n =z =
2 . .

o, ZRo = krso/z is the Rayleigh length, « = n/ZRO = z/ZRo, a wavefront

radius of curvature R_ = z(1 + 22 /2%), a phase factor 6 = 6 (n=0) - (1

-1 . .
+ p)tan “«, an amplitude Eo = Eo(n = O)rso/rs, and a phase velocity vph/c =

1+ 2(1 + py/kPel.

III. Fundamental Gaussian Beam Propagation

We first consider the dynamics of a fundamental Gaussian optical beam
propagating in a gas undergoing ionization. The fundamental Gaussian beam
polarized in the x-direction, is obtained by setting m = p = 0 and él = éx

in Eq. (14). Using Eq. (14) and Eq. (6), the Gaussian beam is given by

2,2 RN
E = E exp(-r°/r_ + iy)é /2 + c.c., | (23)

where ¢ = k& + eo + arz/rg and the functions Eo’ 90, o, and r, are given by
Eqs. (21) and (22) with p = 0. From Eq. (22a),

2 2 .
E_(£,1) = E (&N = 0)r (&0 = 0)/r(E,n), vhere E (E,n = 0)r (&0 = 0) is
proportional to the optical beam power P(&). The intensity and pover

associated with the Gaussian beam in a medium of refractive index n  are

respectively

I = (c/4n)<E x §>°ez = Ipexp(—X), (24a)
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P (w2l [ax 100 = (warrln, (24b)
0
where Ip = (cno/8n)E§ is the peak intensity along the axis, r = 0 and < >
denotes time averaging.
To determine the optical beam dynamics from Egqs. (21) and (22) the
source functions G(n) and H(n) in Eq. (20) are evaluated with p = O.

Substituting Eq. (13) into Eq. (20) and integrating over X we obtain

G 1 2 (%61
LJ = —(k/Z)[(nz/no)Ip[ ] - (kpo/k) [ ] , (25)
1/2 a2

where the functions %1' 9G2 represent filling factors which are
essentially the ratio of the cross-sectional area of the plasma to that of
the optical mode times the normalized plasma density. The functions %1

and ogy are given by

%1 2
| [G ] - _[dx (k) [1
G2 o

1

]exp(—x). (26)

Ionization is maximum where the optical field amplitude is maximum, i.e.,
at r = 0 for the fundamental Gaussian beam. Since the tunneling ionization
rate W(|é|) depends exponentially on the field amplitude, the radial
profile of the plasma density will be highly peaked about the axis r = 0.
Equation (26) can be simplified by expanding the integrand about r = O,

vhich gives %1 = %2 = %’ where

Q
[

(o) ©
o = | a8k (2 i) [ ax exp (-bg(Hx2)
3 0

n

o
2 [ ag'kge) (28 edem) g, 27)
;
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and

k(B = 4n 3/ 29 /)" (B (8))7V Pexp -by(®) ), (282)

372

fl

bg(&) = (2/3)(B)~"“/E (&), (28b)

and Eo = EO/EH. The quantities KG’ bG’ s and Eo are functions of & and
n, whereas the power P ~ riEg is only a function of & as implied by Eq.

(22a).

A. Envelope Equation for Gaussian Beam

Using Eqs. (25)-(28), the envelope equation for the Gaussian beam in

Eq. (21) becomes

2 .2 2.3 22
a’R/an” = 2R (1 - B/By + (1/2)rskpooG), (29)

. 2 2 X .
where r, is constant, ZRo = krso/Z = nnorso/x is the Rayleigh length

associated with the spot size To? R = rs/rSo is the normalized spot size,

2

. 2 . .
P = (n/Z)IprS is the total power and PNG = X /(2nn0n2) is the nonlinear

13-16  1pe terms on the right-hand

focusing power for the Gaussian beam.
side of Eq. (29) denote, respectively, vacuum diffraction, nonlinear
focusing and plasma defocusing.

In the absence of ionization (aG = 0) the envelope equation in Eq.

(29) has the solution

1/2

r, = rg, [1 + - P/PNG)(n/ZRo)Z] , (30)

where is is assumed to be zero at h = 0. For P < PNG the optical beam

diffracts with an effective Rayleigh length given by

~-1/2
ZR = (1 - P/PNG) ZRo' (31)

18



For P = P diffractive spreading balances nonlinear focusing and a

NG’
matched self-guided beam can, in principle, be obtained. However, small
changes awvay from P = PNG will result in loss of equilibrium. For P > PNG

the optical beam self-focuses. In the absence of ionization the beam

focuses down to zero spot size with a focal length given by

-1/72
Lf = (P/PNG -1) ZRo' (32)

However, as the beam focuses the intensity on axis increases resulting in

ionization and plasma defocusing, as is described by Eq. (29).

B. Self-Guided Gaussian Beam

In the presence of ionization, self-guided solutions to Eq. (29) can

be obtained. The condition for a self-guided beam, i.e., 3°R/3n% = 0, is
P/P. . -1 =Kk: r26./2 > 0 (33)
NG pos G- =""

Upon taking the derivative of this expression with respect to & and using

Eq. (27) we find that for a self-guided beam

2 2

- K P2 (EIRG(E) /b, ()

9P/ 3% po NG's

- Phe(E), (34)
where
hg = 16K2 (Bye/engRe(B/ (E2(BBG(D)),

is a function of EO(E). The solution of Eq. (34) yields the self-guided

optical Gaussian beam power as a function of §,

o
P(E) = PNGexp[ | hG<a'>da']. (35)
:
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Equation (33) or (35) describes a family of equilibrium solutions, i.e.,
there are various equilibrium profiles P({), EO(E), and rs(E) which satisfy
these equations. For example, if an equilibrium is chosen such that EO(E)
is constant along the optical beam, then hG is constant and Eq. (35)
implies P(§) = PNGexp(—EhG) and the spot size profile is given by ri({) =
(16/cno)P(£)/Eg. Behind the beam front, & < 0, the optical beam power and
plasma density increase such that the nonlinear self—focuéing term and the

plasma defocusing term remain balanced. Other types of equilibria can be

found, for example, one in which rs(E) is constant.

C. Stability of Gaussian Beam

In this section, the self-guided beam equilibrium described above is
shown to be inherently unstable, i.e., the beam will undergo what we refer
to as an ionization-modulation (IM) instability. The IM instability is due
to varying degrees of ionization along the beam and results in the
modulation of the beam envelope and the disruption of the back of the beam.
To examine the stability of the self-guided beam equilibrium, the envelope
equation, Eq. (29), is expanded about the equilibrium solution. The
perturbations 8r(&,n) and 8E(&,n) are such that rs(E)'+ 8r and EO(E) + &E
denote the perturbed spot size and optical field amplitude respectively.
Furthermore, since the optical beam power within the paraxial approximation

is nonevolving, i.e., independent of h, the perturbations &r and &8E are

related by ér = - (rs/Eo)SE. Expansion of the envelope equation, Eq. (29),
yields
2 o
2 2 4k0 14 4 14 14
97 dr/on” = - —5-52—- dg KG(E )rs(i Y8r(& ,n), (36)
k"r (&) ¢
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vhere bG >> 1 has been assumed (typically the case). For the special case

of an equilibrium with a constant spot size, rS(E) =r_, Eq. (36) becomes

SO

[ & k3(£)]6r -0 (37)
stan 8

2
3 . .
vhere kg = [kao/(krso)) KG(E). Equation (37) can be solved taking a

Laplace transform in the n variable, yielding

o
-2 3
8r ~ | ds expisnh - s d§ kg , (38)
B 3

vhere s is the Laplace transform variable and the integration is over the
Bromwich contour. The asymptotic behavior of &r can be found by

integrating Eq. (38) using the saddle point method,
o
1/3
3 . 2 "3
s ~ exp[4 1 + 193] (2n £d£ kg) ] (39)

Alternatively, the asymptotic behavior of &8r can be determined from
Eq. (37) by assuming &r is a function of only the variable x = (-E)1/3n2/3.

Substituting 8r = &r(x) into Eq. (37) yields

3 2

(4/27) [a3xax + 3/)x 192/ 052 -(1/2)x'2a/ax) Sr = —kg&r. (40)
In the asymptotic limit, x 2 «, Eq. (40) reduces to
(33/ax3]sr - -(27/4)k28r, (41)

vhich yields the solution in Eq. (39).
The growth rate in Eq. (39) can be simplified by noting that, along

the axis r = 0, the equilibrium plasma density profile is given by anp/aa =
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"nnoKG and Eq. (39) becomes ér ~ exp((l + iJg)Ne(E,n)), where

1/3 2/3

N, = (3/25’ 3) [n /n ) [kporson/zRo] (42)

p’ no

is the number of e-folds. If the equilibrium is nearly constant in §, the

= |E[K, and the number of e-folds
2/3

plasma density profile is given by np/nno

is N_ =« |&]23n%/3 vhere o = (3/4) (2K (k The INM

/2

porso Ro)

instability grows as a function of the distance behind the head of the
optical beam, |Z|, and the propagation distance h.

The dependence of Ne on £ indicates that the number of e-folds at the
back of the beam is greater than near the front. The IM instability
disrupts the back of the beam, and the disruption point propagates toward
the front. The disruption point can be defined as the point on the beam
vhere the initial perturbation is increased by exp(No), where No >> 1 is
the number of e-folds necessary for disruption. This point moves toward
the front of the beam with relative velocity Vq = - c(aNe/an)/(aNe/aa),
where Ne(ﬁ,n) = No' For the case where the plasma density profile is

lipear, i.e., n, = KGnno|E|, the disruption velocity in the beam frame is

vy = 2eNa 207, | (43)

To gain some understanding of the IM instability, consider increasing
the spot size of an initially matched optical beam, i.e., 8r(n = 0) > 0.
In this case the beam intensity and ionization rate are reduced resulting
in less plasma generation and enhanced focusing of the beam. The focusing
optical beam overshoots its equilibrium value such that ér < O some
distance behind the beam front. When &r < 0, the intensity, ionization
rate, and plasma density increase, causing the beam to defocus and

overshoot its equilibrium value. This focusing and defocusing of the beam
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results in the IM instability. The modulation amplitude and period are
functions of the distance back from the head of the optical beam, |&|, and

the propagation distance, n = z, as indicated by Eq. (42).

D. Numerical Results for Gaussian Beams

1. Dynamic Solutions

The propagation dynamics of the fundamental Gaussian‘beam is studied
by numerically solving the envelope equation, Eq. (29), for the spot size
rs(E,n). The envelope equation is numerically integrated in n (axial
propagation distance) using a finite-difference method, where the initial
conditions rS(E,n = 0) and (ars(E,n)/an)n=0 are specified. Note that in
evaluating the filling factor aG(E,n) in Eq. (27), the integral over El is
carried out at every n step, since the integrand in Eq. (27) is a function
of E' and n. Ve consider a linearly-polarized laser pulse with a Gaussian
radial profile and an initial (n = z = 0) axial profile given by EO(E,O) =
Eposin(nIEI/L) for -L < & < 0, vhere Epo = (8nIpo/c)1/2 is the initial peak

13

electric field, I = 3.0 x 10 W/cm2 is the initial peak intensity, and L

po

= 60 um is the pulse length. With wavelength X = 1 um and initial spot
size oo = 80 um, the peak power is Po = 3.0 GV and the diffraction length
is ZRo = 2.0 cm. The optical pulse propagates in air at 1 atm: neutral
gas density Do = 2.7 x 1019 cm'3, nonlinear index37 n, = 5.6 x 10'19
cmz/W, normalized ionization potential UI/UH = 1.07, and nonlinear focusing
pover PNG = 2.8 GW (PO/PNG = 1.1).

The simulation begins with the optical pulse at focus (ars/an = 0) in
the neutral gas. With the initial value of the filling factor % computed

via Eq. (27), the envelope equation, Eq. (29), is integrated in the

simulation variables £ = z — vt and n = z. Figures 2(a) and 2(b) show the
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initial n = O optical beam intensity I and plasma density np versus (r,¥§).
In Figs. 2(a) and 2(b), the direction of propagation is towards the right.
Plots of I and np versus radius at the pulse center (& = - 30 um) are shown
in Fig. 2(c) for this case. Note also that the nonlinear nature of the
ionization process causes the plasma density gradient versus both r and 3
to be considerably sharper than the intensity gradient.

The evolution of the optical pulse is shown in Fig. 3(a-d), wvhere the
spot size I (dashed line), intensity I on axis (solid line), and plasma
density np on axis (dotted line) are plotted versus & at (a) n=2z = 0, (b)
6 cm, (c) 8 cm, and (d) 10 cm. Initially, the spot size is constant along
the optical pulse, as shown in Fig. 3(a). Because Po > PNG’ the center of
the pulse is focused while the front and back portions.diffract, as seen in
Fig. 3(b). At § = -25 um, vwhere P = PNG and np << Do diffraction
balances nonlinear focusing and the spot size remains constant at r = rg.-
Behind this point, focusing increases the optical intensity, producing a
corresponding increase in the ionization rate. Because ionization is a
highly nonlinear process, the steepness of the plasma density gradient also
increases. Increased ionization and increased plasma density gradients are
shown in Figs. 3(b-d). Increased ionization causes the latter portion of
the optical pulse to diffract, as can be seen in Figs. 3(c,d). The rapid
change in the plasma density at the steepening ionization front results in
a correspondingly rapid change in the focusing of the optical pulse. This
results in an increasingly narrov intensity spike at the ionization front.

The optical pulse structure observed in Figs. 3(c,d) occurs even wvhen
the pover P greatly exceeds the nonlinear focusing threshold PNG' For
example, Figs. 4(a-d) shov the evolution of a pulse with PO/PNG = 2.

Except for the initial pover and the initial spot size Lo = 110 um (and a
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corresponding change in ZRo = 3.8 cm), the parameters of Fig. 4 are
jdentical to those of Fig. 3. As in Fig. 3, there is a point near the
front of the pulse in Fig. 4 (at & = -15 um) where P = PNG’ np << Do and
diffraction balances nonlinear focusing. Also as before, nonlinear
focusing of the pulse behind this point leads to an increasingly steep
ionization front. This, in turn, produces an increasingly narrow optical

intensity spike.

2. Self-Guided Solutions
Examples of matched beam equilibria are shown in Figs. 5 and 6. In

both cases, we consider a linearly polarized A = 1 um optical pulse with a

Gaussian radial profile propagating in air at 1 atm (nno = 2.7 x 1019 cm'3,

19 2

n, = 5.6 x10°° cm” /W, UI/UH = 1.07, and PNG = 2.8 GW). Figure 5 shows

2
optical power profiles (solid lines) and plasma density profiles (dashed

lines) plotted versus & along the axis for equilibria with constant EO(E)

profiles. Equilibria are shown for three different values of the optical

intensity: Ip = Il =5 x 1013 W/cmz, I2 =6 X 1013

13

V/cmz, and I3 =7 x

10 W/cmz. Here, EO(E) = (BItIp/c)l/2 is constant along the length of the

optical pulse, such that the variation in power P() corresponds to a
variation in spot size r, = (2P/nIp)1/2. Note that the constant Eo profile

produces a constant ionization rate and a linear rise in np/nno << 1.

Also, the power profiles are exponential functions as given in Eq. (35).
Figure 6 shows optical power and plasma density profiles for
equilibria with constant rs(E) =TIy, profiles. 1In this case, matched EO(E)

profiles are determined numerically from Eq. (34) for three different

values of the leading-edge (& = 0) intensity: Ip = I1 =5 x 1013 W/cmz, 12
= 5.1 x 1013 V/cmz, and I3 = 5.2 x 1013 W/cmz. In this case, the variation
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in optical power P(E) corresponds to a variation in intensity Ip = 2P/nr§o,

such that E_ increases with |E| along the length of the pulse. As a
result, the ionization rate increases as a function of |€]. Increased
ionization (defocusing) requires increased power (focusing) to compensate,
further increasing the ionization in a highly nonlinear manner. As a

result, the constant-r equilibrium profiles can be very sensitive to the

value of Ip as in Fig. 6.

3. Ionization-Modulation Instability
An example of the IM instability for a fundamental Gaussian beam
obtained by numerical solution of the envelope equation, Eq. (29), is shown

in Fig. 7. Here, we consider the propagation in air of a constant-r
13

2
W/ em™, r r ~ 78 um, and ZRo =

equilibrium with Ip(E =0) = 3.0 x10 o

1.9 cm. 1In this case, there is very little initial ionization and the
growth of the instability is extremely slow with P(§) = PNG = 2.8 GW along
the length of the optical pulse. The evolution of the optical pulse is
shown in Figs. 7(a-f), where the spot size ry (solid line) and plasma
density np on axis (dashed line) are plotted versus § at (a) h =z = 0, (b)
400 em, (c) 450 cm, (d).SOO cm, (e) 550 cm, and (f) 600 cm. In Fig. 7, the
direction of propagation is towards the right.

The simulation begins, Fig. 7(a), with the optical pulse at focus
(ars/an = 0) in the neutral gas. In Fig. 7(a), the spot size r, is
constant along the pulse and np(E) increases linearly since E0 is
approximately constant. At later times, Figs. 7(b-d), oscillations in ry
cause oscillations in the ionization rate such that each region where r,
has decreased corresponds to an increase in ionization. This is

particularly noticeable at the back of the pulse (& = -60 um) in Fig. 7(c).

26



Eventually, there is a large enough increase in the plasma density so
that the latter portion of the optical pulse is defocused, i.e., the
guiding is disrupted. When the optical pulse is sufficiently defocused the
ionization rate falls and dnp/dE = 0. Thus, an "ionization front" develops
vhich propagates forward in the beam frame. This can be seen in Fig. 7(e),
vhere the ionization front is at § = -40 um, and in Fig. 7(f), where the
ionization front is at & = -33 um. Figures 7 indicate that the disruption
velocity is in good agreement with Eq. (43).

The growth of the instability of Fig. 7 is plotted versus § at fixed n
= z = 550 cm in Fig. 8(a), where 1ln|Ar|), from the numerical integration of
the envelope equation, is compared to the number of e-folds Ne from Eq.
(42). Here, AOr = (rS - rso)/rso' Similarly, ln]Ar|) versus N = z at fixed
£ = -49 um is shown in Fig. 8(b). For both plots, excellent agreement is
observed between the slope of Ne(E) and the peaks of the 1n|Ar|) curve. As
expected, agreement tends to break down for §,n » 0, where the growth is

not yet asymptotic, and for ln]Ar|) + 0, where the growth is nonlinear.

IV. Higher-Order Radially-Polarized Beam Propagation

We nov consider the dynamics of a radially-polarized optical beam

propagating in a gas undergoing ionization. The radially-polarized optical

n

beam is formed by taking m = O, p = 1 in Eq. (14), setting ag 1 = bo 1=
’ b

14
Eoexp(leo), e =8, and & ey. The resulting field, from Eqs. (6) and

(14), is

E = Eo(Jff/rs)exp(— r2/r§ + iw)ér/Z + C.C., (44)
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vhere ¢ = kK + 6 + arz/r2 and & = cos6 é&_+ sin® & _is the unit radial
o s r X y
vector. The functions Eo, 60, «, and Iy satisfy Eqs. (21) and (22) with p
= 1. From Eq. (22a), EO(E,n) = EO(E,n = O)rS(E,n = O)/rs(i,n), where
Eg(i,n = O)ri(i,n = 0) is proportional to the optical beam power P(&). The

axial field component associated with the radial field in Eq. (44), as

obtained from V-E = 0, is maximum along the axis and given by

2 i . 2 oy
gz = Zizsl Eo(l - (rz/ri)(l - 1a)]exp(— r /rz + 1w)ez/2 + C.C.,
(45a)

242 i , o \a
E (r = 0) = ke Eoexp(lkE + 160)ez/2 + C.C., (45b)

vhere the expression in Eq. (45b) is valid along the z-axis, i.e., r = 0.
The intensity and power associated with the radially-polarized beam in a

medium of refractive index n  are respectively

I = (c/4m)<E x B>re, = I Xexp(1-X), (46a)
2 2
P = (n/2)rS dx I(X) = (en/2)rst, (46b)
o .
where I_ = (cno/8n)E§/e is the maximum intensity, which occurs at X =1

(r = rs/Jf), e = 2.72 and < > denotes time averaging. Similar higher-order
radially-polarized modes have been produced using an axicon focusing
configuration.38’39
To determine the optical beam dynamics from Egs. (21) and (22) the
source functions G(n) and H(n) in Eq. (20) are evaluated with p = 1.

Substituting K2 from Eq. (13) into Eq. (20) and integrating over n yields

G 1 2 %1
[H] - -(k/2)[(e/2)(n2/n )I [ ] + (k /k) [ ] , (47)
°" Pl1/4 P o9
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where the filling factors °R1,2

o u 1
[ Rl] - I dx (kp/kpo)zxe‘x[ ]. (48)
R o 1-x/2

are given by

The tunneling ionization rate W(|E|) is maximum when the optical field is

maximum. The magnitude of the radial polarized field in the expression for

ki, Eq. (12), can be vritten as |E| = E (1 + y)llzexp[(l + y)/2], vhere y =
2r2/r§(€') - 1, and has a maximum at y = 0, i.e., r = rs(ﬁl)/ff. Expanding

|E| for y << 1 gives [E| = (EO/JE)(I - y2/4). Using this expression in

V(|E|), and noting that W(|E|) is highly peaked about y = 0, gives

° ~bp (€ )y%/4
2 2 ’ ' R
k2@l = ef de'ry(E)e , (49)
;
vhere
(&) = 4o (3/m 2 4(e ey (U 4 (B (&))'1/2 xp (-bg(9))
KR - (o] e oc I 0o ep"R ’
(50a)
be(8) = § &2 %/E (), (50b)

and ﬁo = EO/EH. Inserting Eq. (49) into the expressions for the filling
factors, Eq. (48), and assuming bR >> 1 allows the integration over r to be

carried out yielding

o ° ! ’ ’ 1‘
[ Rl] - 208 [ ag'geeenpt A )[ 2 ]X:exp(l - x2), (51)
5 : 1-X_/2

where X = rS(E’)/rs(E)-
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A. Envelope Equation for Higher-Order Beam

Using Eq. (47) for the source function H, the envelope equation in Eq.

(21) becomes

2. .2 .-2.-3
o?R/an’ = 2R (1 - B/Bg + (1/2)r k RZ) (52)

. 2 2 . .
where r,, is constant, ZRo = krso/z = nnorso/k is the Rayleigh length
associated with the spot size 'eo? R = rs/rso is the normalized spot size,
2 . 2 .

= (en/2)Iprs is the total power, and PNR = 4PNG = 2X /(nnonz) is the
nonlinear focusing power for the higher-order radially-polarized beam. The
terms on the right-hand side of Eq. (52) denote respectively, vacuum
diffraction, nonlinear focusing and plasma defocusing. In the absence of
ionization, Oy = 0, the solution to Eq. (52) for ry is given by Eq. (30)

with PNG replaced by PNR

B. Self-Guided Higher-Order Beam

The condition for a matched beam, i.e., 32R/3n2 = 0, is given by
P/P - 1=k r2a. /2> 0 (53)
NR po's R2°° = 7°

Equation (53) describes a family of equilibrium solutions, i.e., there are
various equilibrium profiles P(E), EO(E), and rS(E) vhich satisfy Eq. (53).
For the special case of a constant spot size matched beam, r =L the

matched-beam power is given by
3P/ 3E = -(J“/Z)k P (&) /b 2¢8) (54)
NR soKR R !

where KR(E) and bR(E) are functions of P(%) through EO(E), i.e., P(&) =

(cno/16)E§(£)r§0
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C. Stability of Higher-Order Beam

The stability of the matched-beam equilibrium can be analyzed by
perturbing the envelope equation, Eq. (52), about the matched beam
solution. This is accomplished by introducing a constant power
perturbation to the spot size and field amplitude of the form rS(E) +
ér(&,n) and EO(E) + 8E(&,n), where 8E/E0 = —ér/rs. In the limit bR >» 1,

the envelope perturbation satisfies the equation

2 (o}
k‘ r 4 7 r
a2sr/am? = - zﬁ -{Zﬁ’—gi J' dt [(z - xi)bR(a Y8r (& )
Z-. R
Ro 3
1-x2
4 ] 7 _ ' 2 -7
+ 2X_ (2 - 4x§ ' XS)Br(E,)]rS(E. Ky (E )le’Z(a Xle S
(55)
For a constant spot size equilibrium, Xs = 1, Eq. (55) becomes
3
2 ° ,k
3 _ g [ar Xl 8 3osre, (56)
-3 2 b FY3 r
no 3 R

172

In the limit b, >> N_ >> 1, where
R R e

2
3
vhere k2 = 2T (kpo/(krso)) Kgb

Ne is the number of e-folds of the instability, the second term on the left

of Eq. (56) can be neglected and the asymptotic behavior of &r is given by
o
1/3
!
St ~ exp[% (1 . iﬁ] (an Id{ ki) ] (57)
g

Notice that, for an equilibrium in which EO(E) is nearly constant, the peak

equilibrium plasma density occurs at r = rS/Jf and is given by np/nno =
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-eKRE. In this limit, the asymptotic behavior of &r can be written as ér ~

exp((l + iJE)Ne), wvhere

1/3
3 |4n ,1/2 2
Ne =7 &;-bR (np/nno) (kporson/ZRo) ’ (58)

is the number of e-folds. Hence, the growth rate of the IM instability for

the higher-order optical beam differs roughly by a factor of (an/l;ez)l/6 ~

1 from that of the fundamental, assuming equal values at kporso’ np/nno,

and n/ZRO.

D. Numerical Results for Higher-Order Beam

1. Dynamic Solutions

The propagation dynamics of a higher-order radially-polarized laser
pulse can be described by a numerical solution of the envelope equation,
Eq. (52). Initially, h = z = 0, the profile of the radial electric field

is |E(r,£)| = Eo(E,O)(Jff/rs)exp(—rz/rz), with an axial profile EO(E) =

E 0el/zsin(n|£|/L) for -L < &£ < 0, vhere L = 60 um is the optical pulse

p
length. The peak initial field, occurring at r = rs/{f, is E__ =

po
172 13 W/cm2 is the peak initial optical

(8nIpo/c) , where Ipo = 4.7 x 10

intensity. With wavelength X = 1 um and initial spot size re, = 35 uym,. the
peak power is Po = 2.5 GV and the diffraction length is ZRo = 0.4 cm. Ve
consider propagation in Hydrogen (HZ) at 30 atm: nonlinear index4 n, = 3.3
X 10_18 cmz/W, ionization energy UI = 15.4 eV, neutral density no = 8.1 x
1020 cm_3, and nonlinear focusing power PNR = 1.9 GW (PO/PNR = 1.3).

Hydrogen is chosen for its low atomic number Za and, hence, Bremsstrahlung

losses can be neglected, see Appendix C.
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The simulation begins with the optical pulse at focus (ars/an = 0) in
the neutral gas with intensity I(r,{) and plasma density np(r,&) profiles
initialized as shown in Fig. 9(a,b), where the direction of propagation is
towards the right. The accelerating field Ez = Iézl profile is plotted in
Fig. 9(c), vhere E_ = E_exp(ikf)/2 + c.c. vith E_ given by Eq. (45). Plots
of I, fé, and np versus radius at the pulse center (§ = -30 um) are shown
in Fig. 9(d) for this case. The highly nonlinear nature of the ionization
process causes the plasma density gradient versus both r and & to be
considerably sharper than the intensity gradient.

The evolution of the optical pulse is shown in Figs. 10(a-d), where
the spot size r, (dashed line), accelerating field Eé on axis (solid line),
and plasma density np (dotted line) are plotted versus & at (a) h =2z = 0,
(b) 0.4 cm, (c) 0.7 cm, and (d) 1.0 cm. In Figs. 10(a-d), np(E) is
evaluated at r = rmin/Jf, vhere roin is the minimum value of rS(E).
Initially, the spot size is constant along the optical pulse, and the peak
accelerating field is ﬁ; = 400 MV/m, as in Fig. 10(a). Since Po > PNR’ the
center of'the pulse is focused while the front and back portions diffract,
as shown in Fig. 10(b). The increasing optical intensity in the center of

172 Diffraction

the pulse increases the accelerating field since ﬁ; ~1
balances nonlinear focusing at § = -21 um, where P = PNR’ and the spot size
remains constant, Iy = Ige Behind this point, focusing increases the
optical intensity, producing a corresponding increase in the ionization
rate. Increased ionization and increased plasma density gradients are
shown in Figs. 10(a-c). Increasgd ionization causes the optical pulse to
diffract, reducing ﬁz in the latter portion of the pulse, as shown in Figs.
10(c,d). The rapid change in the plasma density at the steepening

ionization front results in a corresponding rapid change in the focusing of
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the pulse which results in an increasingly narrowv spike in Eé at the
jonization front. The peak accelerating field is E; =1.1GV/mat h=2 =

1.0 cm = 2.SZRO.

2. Self-Guided Solutions
An example of a self-guided, higher-order radially-polarized beam of

wavelength A\ = 1 um propagating in Hydrogen (HZ) at 30 atm is shown in Fig.

18 cmZ/W, U./U

11. For H 1’y

, at 30 atm, n_ = 8.1 x 1020 en3, n, = 3.3 x 107

= 1.1, and PNR ~ 1.9 GV. The matched beam conditions can be determined
from Eq. (53) together with Eq. (51) for a given axial intensity profile.

For equilibria with constant EO(E) profiles, i.e., constant peak intensity

13

of Ip = 4.7 x 10 V/cmz, the matched profiles for power P and plasma

density np at r = rmin/{i versus & are shown in Fig. 11. For these

parameters, the degree of ionization is small, np/nno < 10'4. The spot

. . . 2 . .
size is given by rS(E) = 2P(E)/(ne1p), wvhich gives rS(E =0) = roin = 31 um
at the front of the beam. The on-axis accelerating field, also shown in
Fig. 11, has the maximum value 450 MV/m at the front of the optical beam.

Since ﬁé ~ n%/z ~ n1/2, the accelerating gradient can be increased by

no

increasing the gas pressure.

3. Ionization-Modulation Instability

As discussed in Sec. IV.C., the optical beam undergoes an IM
instability. Numerical simulations of Eq. (52) shov that, with a 1%
initial perturbation of the spot size, the IM instability significantly
disrupts the equilibrium beam profile of Fig. 11 after ~ 10 cm of
propagation. The growth rate of the IM instability is a highly nonlinear

function of the optical intensity through the plasma density. Reducing the

13

intensity in the example of Fig. 11 to 3.2 x 10 W/cm2 (which reduces Ez
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to 300 MeV/m) results in a matched beam with very little ionization (the
plasma density is reduced by a factor of ~ 130) and little variation in
powver and spot size along the length of the optical pulse. Simulations
show that with a 1% perturbation in the spot size, the pulse propagates > 1
meter without significant disruption. The behavior of the IM instability
is shown in the following numerical example. In this example, however, the
instability is allowed to grow from numerical noise to f;cilitate
comparison to the theoretical growth rate.

Propagation of a guided pulse in H2 at 30 atm is shown in Fig. 12.

13

Initially, Ip = 3.2 x 10 V/cm2 is constant throughout the pulse, the peak

n

accelerating field is Eé 300 MV/m, the spot size is ry = 37 um (ZRo =

0.44 cm), and P(E) =P 1.9 GV. The evolution of the optical pulse is

NR
shown in Figs. 12(a-d), where the spot size ry (dashed line), accelerating
field ﬁé on axis (solid line), and plasma density n,atr= rmin/{i (dotted
line) are plotted versus § at (a) n =2z = 0, (b) 60 cm, (c) 75 cm, and (d)
90 cm. Initially, the spot size is constant along the optical pulse, and
the peak accelerating field is Eé = 300 MV/m, as in Fig. 12(a). At later
times, Figs. 12(b-d), oscillations in r, cause oscillations in the
ionization rate such that each region where r has decreased corresponds to
an increase in —dnp/dE. Eventually, the plasma density is sufficiently
large so that the latter portion of the optical pulse is defocused. In the
region where the pulse is sufficiently defocused the ionization rate falls,
dnp/dE = 0, and an ionization front develops which propagates toward the
front of the beam at the disruption velocity Vqr See Eq. (43). This can be

seen in Fig. 12(c), where the ionization front is at & = -42 um, and in

Fig. 12(d), where the ionization front is at & = -29 um.
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The growth of the perturbed radius due to the instability is plotted
versus £ at fixed n = 75 em in Fig. 13(a), where 1ln|dr|), from the
integration of the envelope equation, Eq. (52), is compared to the number
of e-folds Ne from Eq. (58). Here, Or = (rs - rso)/rso’ where rS(E) is
plotted in Fig. 12(c). Similarly, growth versus h = z at fixed § = -40 uh
is shown in Fig. 13(b). For both plots, good agreement is obtained between
the slope of Ne(E) and the peaks of the 1n|Ar|) curve. As expected,

agreement tends to break down for &,n » 0, where the growth is not yet in

the asymptotic limit, and for 1n|Ar|) » 0, where the growth is nonlinear.

V. Self-Guided Inverse Cherenkov Accelerator

A, Electron Energy Gain in Vacuum

The axial field component of a higher-order radially-polarized optical
beam, which has an amplitude on axis of Ezo = (2J§7krs)Eo, can be used to
accelerate an injected electron beam propagating along the z-axis.g’l‘o'43
In vacuum, the phase velocity vph of the optical beam is greater than c and
near the fécal point is vph/c =1 + 2/kZRo. Since vph > ¢, phase slippage
between the electrons and optical beam will occur. For a highly
relativistic injected electron in vacuum, the slippage distance LS is
defined as the distance over which the electron phase slips by one-half an
optical period, Ls(vph - ¢)/c = M2, which gives Ls = nZRO/Z. It can be
shown that a highly relativistic electron interacting with the axial

optical field Ez in vacuum, Eq. (59), from z = -® to z = « experiences zero

net energy gain. This result is a particular case of the Lawson-Woodward

theorem.44’45

It can also be shown,9’38-43 however, that if the interaction distance

is limited by placing a mirror approximately one Rayleigh length from the
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focal point, i.e., -ZRO < z { », then the maximum energy gain for a highly
relativistic electron is Ve[MeV] = Pl/Z[GV]. Material damage
considerations, associated with the introduction of an optical component

near focus, place serious limits on the optical intensity.g’42

B. Electron Energy Gain in Conventional ICA
By introducing a neutral gas into the interaction region, as in the
inverse Cherenkov accelerator (ICA), the phase velocity of the optical beam

6-8 t

can be reduced and phase slippage reduced. In the conventional ICA, he

optical beam diffracts and the effects of nonlinear self-focusing and
ionization are neglected. For a higher-order Gaussian beam the phase
velocity near focus is vph/c =1+ 2/kZRo - (no - 1)/no. Typically n, - 1
<< 1 and is proportional to the neutral gas density noo- Proper choice of
n_ . can result in vph < ¢ and the reduction of phase slippage, however,
diffraction remains an important limitation.

The energy gain in a conventional ICA driven by a higher-order
Gaussian beam can be calculated as follows. Assuming vacuum diffraction

and neglecting nonlinear and plasma effects, the axial electric field along

r = 0 in the conventional ICA is given by

-1

2 siny, (59)

2
E(r = 0) = - Ezo(l .z /zRo)

where Ezo = (ZJf/krso)Eo(z = 0) is the peak axial electric field,

¢ = kz - ckt/no - 2tan_lz/ZRo + wb is the phase and wo is a constant.
Equation (59) follows from Eq. (45) with Eo(ﬁ,n) = Eo(E,n = O)rso/rs(n),
where ry = rso(l + \'12/ZI2{)1/2 and n = Z. The energy gain of a highly

relativistic electron interacting with the optical field, given by Eq.

(59), in a medium with linear refractive index n, is given by
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2
W = q [ dz B(x = 0) = - 2nqE, AkZy exp(-tkZp), (60)

<]

for &k > 0 and W = O for &k < 0, where &k = k(n_ - 1/8 )/n_ =k(n_ -1 -
= e o o’ o 0

172vhym, v, = (1 - 87

is the electron relativistic mass factor, BO =
vo/c, Vo is the axial electron velocity and an initial phase of sipwo =1
was assumed. In obtaining Eq. (60) the electron trajectory was taken along
r =0 fromz = - » to z = ®, vhere z = Boct = ct(l - 1/27§). Equation (60)
is valid as long as the energy gain is less than the initial energy, Ve K
(yo - 1)mc2. For highly relativistic electrons in vacuum (Bo = 1 and n, =
1), Ok vanishes and the energy change is zero, We = 0, in accordance with
the Lawson-Woodward theorem. In a gas, the energy gain Ve is maximum when
2

. 2 2
BkZp = 1, i.e., when n, - 1 = n /kZp  + 1/2Y; = (1/2)((X/nrs) /n + 1/yo).

In this case, the maximum energy gain in the conventional ICA is given by

Ve =- qE, (2n/e)Zp = - qu(O)(Z{fn/e)rso. (61)

The maximum energy gain is the product of the peak axial field Ezo and
(2n/e)ZRo, which is the effective acceleration length. In terms of the

optical power, Eq. (61) can be written as

1/2
v [Mev] = 2.3 P~'“[Gu]. (62)

A similar result can be obtained in vacuum acceleration by limiting the
interaction region to approximately ZZR about the laser focus through the

use of optical components (e.g., mirrors).

In addition to the higher-order Gaussian optical beam discussed above,
a conventional ICA could be driven by a first order Bessel (axicon)

beam.7’8 A nonideal Bessel beam (finite transverse extent) consisting of N
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. . . 2
rings (lobes) will propagate a distance Lmax = NZRO, vhere ZRo = kro/2 and
r, is the width of an individual ring. Consequently, the maximum energy
gain in a conventional ICA driven by a Bessel beam is approximately a

172 greater than an ICA driven by a higher-order Gaussian beanm,

factor of N
assuming equal total power in each of the beams, as discussed in Appendix
D.

The above calculation of the energy gain in the conventional ICA
assumes vacuum diffraction, i.e., the effects of nonlinear self-focusing
and ionization are neglected. Equation (60) only holds for powers below
the nonlinear focusing power, P << PNR’ and intensities below the

ionization threshold, I << I Typically, at atmospheric pressures, PNR ~

I
10 GW (1 TVW) for a A = 1 pm (10 um) laser, the single stage energy gain in
a conventional ICA driven by a higher-order Gaussian beam, Eq. (62), is
limited to We ~ 5 MeV (50 MeV). Higher energy gains require higher laser
pover, and the effects of self-focusing and ionization can no longer be
neglected. Recent experiments at BNL8 on the conventional ICA observed a

3.7 MeV energy gain (31 MeV/m) of an injected electron beam (40 MeV) using

a 580 MW CO2 laser (A = 10.6 um) in 2.2 atm of H2 gas.

c. Electron Acceleration in Self-Guided ICA

To enhance the single-stage energy gain, a self-guided ICA
configuration is proposed and analyzed. The self-guided ICA operates at
laser powers near the nonlinear focusing power and intensities near the
ionization intensity. The self-guided ICA is based on the optically-guided
higher-order radially-polarized optical beam described in Sec. IV. The
energy gain is enhanced since (i) the self-guided ICA operates at higher

pover and intensity which increases the accelerating field, and (ii) the
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optical beam is self-guided which increases the acceleration length beyond

the limits of vacuum diffraction.

1. Phase Velocity

The evolution of the spot size of the higher-order radially-polarized
beam in the self-guided ICA is described by Eq. (52). 1In addition, the
evolution of phase velocity vph = chh of the higher-order radially-
polarized beam is given by Eq. (22d) with p = 1 together with Egs. (47) and

(31),

- 2.2.-1 3 1 2.2
Bon =Ty + 4K L g g+ g rskpo(aRl " zuRz)], (63)
wvhere the terms on the right-hand side denote, respectively, the
contributions from the linear refractive index, finite spot size, nonlinear

refractive index and the plasma. For a self-guided beam with I =T the

phase velocity is ﬁph < 1 and given by

2 -1
Bon = (1 - 0.5(Mm r_ ) P/PNR)nO ) (64)
The Lorentz factor associated with B oh is v ph = = (1 - B )_1/2,
_y-1/2
Yo ((x/nn r.) 2B/ + 1 - 07 ) : (65)

The nonlinear refractive index n, can have a significant contribution to
the phase velocity.

The phase velocity can be controlled by introducing a small amount of
background plasma. A transversely uniform background plasma will increase
the phase velocity but have no effect on the focusing of the optical beam.

By introducing a background plasma, the right-hand sides of Egs. (63)-(65)
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will be modified by the addition of the term kib/Zkz, vhere kib =

Anqznb/mc2 and n, is the background plasma density. The background plasma
can be created by introducing a small concentration of easily ionized gas,
i.e., a gas with a low ionization energy UI. In addition, the background

density can be tapered as a function of z to increase the phase velocity

and optimize electron acceleration.

2. Accelerating Gradient

In the self-guided ICA, the accelerated electrons are acted on by both
an axial accelerating EZ field as well as a transverse Er field (for r #
0). For an electron near the axis, rzlrz << 1, the field components
associated with the higher-order radially-polarized mode are given by Ez =
- (folkrs)Eosinw and Er e ({fr/rs)Eocosw, wvhere ¢ = k& + 60 is the phase,
as given by Eqs. (44) and (45). For Eo > 0 the electron will experience
axial acceleration within the phase regions siny > 0 and transverse
focusing within the phase regions cosy < 0. Simultaneous acceleration and
transverse focusing occurs for n/2 < ¢y + 2mn < n, where n = 0,+1,+2,...

The accelerating gradient Ezo = (Jf/n)(k/norso)Eo can be estimated by

considering the case of a self-guided beam and assuming that the peak

14

intensity is near the ionization intensity II (~ 10 W/cmz) and that the

pover is near the nonlinear focusing power, i.e., IP & II and P = PNR' For
. . 172 172
this case we find that Eo = (8neII/cno) , )\/rS = (n/2)(enon211) and

the accelerating gradient becomes

172 172 1/2
E = (enZII/ZnO) E0 = (2e/no)(nnZII/c) II ,

20 (66)
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which is a function of only n, and II. For the equilibrium in Fig. 11, Ezo

= 450 MeV.

VI. IJonization and Collisional Losses

In this section the attenuation length of the optical field due to
electron collisions and ionization losses is obtained by solving the wave
equation, Eq. (1), in the one-dimensional limit in the absence of the
nonlinear polarization field P. Collisions and ionization losses enter the
vave equation through the plasma current density ;p'

In the presence of ionization and electron collisions, the equation

for the plasma current density given by Eq. (5) is modified,

(67)

9J /8t = 0»2/4n)E - vJ
-~ p ~ m~

P p’
where Vi is the effective electron collision frequency for momentum
transfer and is discussed in Appendix B. Since the optical frequency is
large compared to the collision frequency, %, > V! Eq. (67) can be

approximatéd by.
2 .
ag /3t = (ram) (2 - iy /o, )E, (68)

where np ~ wi is given by Eq. (9).
Using the field representation in Eq. (6), the one-dimensional wave

equation in the §,n variables becomes

. - 20, . -
2(ik + 3/3E)3E/3N = kp(l - iy /e JE, (69)

where ckp = wp(&) is the plasma frequency. Since k << [3/3&| and v /w <<

1, Eq. (69) can be approximated by
3L . . . (&42)
2B = -i(uy/o) (1 - 1y /ey ¢ (ic/a a2t (WE/2), (70)
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where W, = ck, 5p = wp(ﬁ)/wo is the normalized plasma frequency, and n = 1

has been assumed. Substituting E = Eoexp(ieo) into Eq. (70), where Eo(E,n)

and OO(E,n) are the real field amplitude and phase, we obtain

3E2/3n = - T(E,n)EZ, (71a)
0 0
96 9
_o,._1= n_p
on -3 wp((‘)o/c) [1 + 2 3L ]7 (71b)
wvhere
~2 ~2 ¢ ~2 2
el = ¥ cawp/BE -3 wpatn(Eo)/ai, (72)

is the effective damping rate due to collisions and ionization. A similar
result, i.e., Eq. (71), has been obtained in Ref. 30.

In Eq. (72), the first term vmﬁi represents losses due to collisions.
The second term - caﬁi/aﬁ = Wﬁinno/np represents ionization losses due to
the fact that an electron produced by ionization in the presence of an
optical field leaves behind a residual energy approximately equal to the
oscillation energy €os* The ionization loss term can also be derived by
equating the rate of l?ss of electromagnetic energy —ca(Eﬁ/Sn)/an to the
rate at which electrons are being produced —canp/ai ='Vnno multiplied by

the average oscillation energy per electron €os = q2E2/2mw%, vhich gives

o
2 ~2 2 . R - .
can/an = - Wwp(nno/np)Eo. This expression for the ionization losses

assumes that the oscillation energy is large compared to the electron

ionization energy, € s > UI' The third term on the right-hand side of Eq.

0
(72) represents the slippage of the optical beam envelope in the § = z-ct,

n = z frame since the group velocity vg < ¢ in the presence of the plasma.
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Three-dimension effects can be approximated by introducing a filling

factor £ into Eq. (71a). The rate of decrease of optical beam pover, due

to collisions and ionization losses, is given by

dP/on = —P/Ld, (73)

where

2 2 2
Ly = ck /(vmkp N wkn)f (74)

is the attenuation length. In Eq. (74), V is the tunneling ionization

2 2,1/2 2 2,1/2 .
rate, kp = (4nq np/mc ) , kn = (4mq nno/mc ) , £ = op/aL << 1 is the
filling factor, and dp (aL) is the transverse cross-sectional area of the

generated plasma (laser). As an example, for Do = 2.7 x 1019‘cm_3 and

/n_ = 10"4, Vo = Ven * 7 x 10125ec_1 as discussed in Appendix B.

"5 ho
Assuming W/c = 10'2 cm-l, the attenuation distance is Ly = 103f_1 cm.
The actual frequency of the optical beam is w = - 3(kE + 90)/3t = ck +

caeo/aa. Using Eq. (71b) we find

o

=1 - 0 aa2/at -
W =1 - 3 36 /38

azag/aaz. (75)
The third term on the right-hand side of Eq. (75) is typically small
compared to the second term. Furthermore, since awi/aa < 0, the frequency

will be upshifted as the optical beam propagates.29_31

VII. Discussion

The propagation of both fundamental and higher-order Gaussian optical
beams in gases undergoing ionization has been studied analytically and
numerically. The propagation model includes the effects of the linear and

nonlinear polarization current, the linear plasma current, and plasma
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generation via tunneling ionization. Envelope equations describing the
evolution of the spot size, amplitude, and phase of the optical beam were
derived by applying the source dependent expansion method to the paraxial
wave equation in the r, § = z - ct/no, and N = z coordinate system. The
envelope equation for the evolution of the spot size I, is given by Eq.
(29) for the fundamental Gaussian beam or Eq. (52) for the higher-order
radially-polarized beam. The nonlinear focusing power for the high-order
beam PNR was found to be four times that of the fundamental Gaussian beam,
i.e., Pyp =4Pyg = 23%/(mn n,).

The evolution of an optical pulse with an initial power profile of the
form P(§) = Posinz(ni/L) for -L < & < 0 vith P0 > PN has been studied by
numerically solving the envelope equation Eq. (29) (Eq. (52)), wvhere PN =
PNG (PNR) for the fundamental Gaussian (high-order radially-polarized)
beam. The front portion of the optical beam where P < PN diffracts up to

the point where P = P The point on the front of the optical beam where P

N*
= PN remains guided, r, =r.. A narrov region of the pulse just behind
the position vhere P > PN will focus. In the region where focusing occurs
the intensity and the ionization rate increase, resulting in a sharp rise
in the plasma density. The increase in plasma density causes the remainder
of the pulse to diffract. This behavior is shown in Figs. 3, 4, and 12.

Self-guided solutions, i.e., ars/an = 0, can result from a balancing
of diffraction, nonlinear self-focusing, and plasma defocusing. These
solutions are characterized by beam profiles with P = PN at the front (§ =
0) of the beam, since the plasma density vanishes at the leading edge of

the optical beam. As the plasma density increases behind the front of the

beam (& < 0), the power in the self-guided beam also increases such that P
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> PN and 9P/93f < 0. For a typical self-guided solution the amount of
ionization is small, np/nno < 10_4. Examples of self-guided beam profiles
are shown in Figs. 5, 6, and 11.

Self-guided optical beams are subject to an ionization-modulation (IM)
instability. The mechanism of the IM instability can be understood by
considering a perturbation of the spot size &r for which the pover is
constant. For example, if the beam spot size is increaséd, i.e., &r > O,
the beam intensity and ionization rate are reduced, resulting in less
plasma generation. Nonlinear self-focusing and plasma defocusing are no
longer balanced and the beam focuses. The focusing beam overshoots its
equilibrium value, i.e., &r < 0, some distance behind the front. When ér <
0, the intensity, ionization rate, and plasma density increase, causing the
beam to defocus and again overshoot its equilibrium value. This focusing
and defocusing of the beam due to a varying amount of ionization throughout
the beam results in the IM instability. For a fundamental Gaussian beam,
the asymptotic linear growth of the instability is given by ér ~ exp[(1 +

1/3

. 2 .
1J§)Ne], wvhere Ne =z [(k_r n/ZRo) np(E)/nno] , as given by Eq. (42).

po” so
The modulation amplitude increases with both the distance from the front of
the beam, |&|, and the propagation distance n = z. The IM instability
leads to a disruption (erosion) of the back of the beam which moves toward
the beam front at a relative velocity \£ given by Eq. (43). Good agreement
was obtained between numerical solutions of the full envelope equation for
the IM instability in the linear regime and the analytical expressions for
the asymptotic growth rates, as shown in Figs. 8 and 13.

The results in Section III show that self-guiding of a Gaussian beam

requires a nearly constant axial power profile with P = PNG and a peak

intensity near the ionization threshold, IP = II' Recent experiments on

46



the propagation of short (200 fs, A = 0.8 um) laser pulses in air have been

17 In these experiments, a large

performed at the University of Michigan.
portion of the initial laser power was observed to be confined to a narrow
spot size (~ 40 um) that propagated some 20 m in air at 1 atm. The
intensity in the narrow filament was on the order of 1014 V/cm2 and partial
ionization was observed along the propagation axis. The laser pulse was
injected into air with a large spot size (~ 1 cm) and a peak power several
times the nonlinear focusing power, P = 6 PNG = 10 GV, where PNG =1.7 GW
for air. These experimental conditions are far from the theoretical
conditions for self-guiding a Gaussian beam, as found in Section III. Not
only is the observed threshold for nonlinear focusing substantially higher
than the calculated value, but a significant portion of the optical power
is observed to reside in a large halo surrounding the central filament.
This large radius (~ 1 cm) halo strongly affects the propagation dynamics.
The present analysis does not directly apply to this experiment since the
observed optical beam is apparently far from a Gaussian transverse profile.
In addition, a self-guided inverse Cherenkov accelerator (ICA) has
been proposed and analyzed. In this acceleration configuration a self-
guided higher-order radially-polarized optical beam propagates through a
gas. Associated with the high-order mode is an axial electric field
component that is maximum along the axis and can be used to accelerate an
injected electron beam. The phase velocity of the self-guided mode is less
than the speed of light and can be controlled by introducing a uniform
background plasma. Since the self-guided mode has a power near the

the amplitude of the axial electric

nonlinear focusing power, P PNR’

1/2 .
9.6(n2/c) Ip/no’ wvhere Ip is the peak

n

field can be written as EZo

optical beam intensity. Large values of the axial field amplitude,
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typically on the order of 0.5 GV/m, require large values of n, and Ip.
Since n, is proportional to the neutral gas density noo the accelerating
field can be increased by increasing noo To avoid excessive amounts of
plasma and defocusing, the peak intensity should be near the ionization

threshold, Ip = I.. In the self-guided mode the propagation distance is

I
limited by the IM instability. Since the number of e-folds of the IM
instability scales as Ne ~ n;/s, vhere the plasma density'np is a highly

nonlinear function of Ip, the peak intensity must be kept sufficiently low.
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Appendix A: Photo-Ionization Rates

Photo-ionization can take place in either the tunneling or multi-

24-28 These regimes are characterized by the Keldysh

172

photon regime.
parameter Y = (UI/SOS) , Where UI is the ionization energy and sos =
(1/2)m(q|§|/mw)2 is the electron oscillation energy. The Keldysh parameter

can also be written as Y = T where T, is the tunneling time, i.e., the

t
transit time of the electron through the atomic Coulomb barrier. The low
field limit (yk > 1) corresponds to the multi-photon ionization regime,
vhereas the high field limit (yk < 1) corresponds fo the tunneling
ionization regime.

In the high field limit, Yi < 1, the ionization rate can be determined
by a tunneling calculation for an atom in the presence of a static electric

field of amplitude E. The tunneling ionization rate, i.e., the probability

(per unit time) of ionization, is given by25

572 3/2
W = 4g ()72

.
EH/E)eXp[— 3 (UI) EH/E], (A1)
where the variables in Eq. (Al) have been normalized in terms of atomic
constants. In Eq. (Al), 90 = afc/ao = 4.1 x 1016 sec—1 is the
characteristic atomic frequency, ap = 2nq2/hc = 1/137 is the fine structure
constant, occ is the characteristic atomic velocity, a_ = h2/(4n2|q|2m) =

5.3 x 10_9 cm is the Bohr radius, U, = U_./U is the ionization energy

I I'"H I
= 13.6 eV is the ionization energy of hydrogen and EH = |q|/a§ =

, U

in eV, UH

5.2 GV/cm is the hydrogenic electric field. The ionization rate in Eq.

(Al) vanishes at both small and large values of the electric field, and has
a maximum at E = 2.3 (ﬁI)S/ZEH.
In the limit Yk << 1, the tunneling time is much less than the laser

period, T, <X w_l, and therefore, Eq. (Al) describes the instantaneous

t
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jonization rate in the laser field. For a circularly polarized laser field
of the form E = |é|(cos(kz - wt)éx + sin(kz - wt)éy), wvhere |é| is
constant, the ionization rate is obtained by setting E = Iél in Eq. (Al).
For a linearly polarized laser field of the form E = |é|cos(kz - wt)éx, the
average ionization rate is obtained by averaging Eq. (Al) over a laser
oscillation period. The average ionization rate for a linearly or radially

polarized laser field is found to be given by

1/2 3/2

v = 43mY2e (@7 gy [EDY Pexn[- £ (T By E]]- (42)

When Y > 1, ionization occurs by a multi-photon process. In this
case No photons are required to increase the electron energy by the
ionization energy UI' For an electron ionized from the ground state to the

continuum, the ionization rate can be approximated by

_2N
V o= Ao Ng/z(Zyk) o (A3)

where A is a constant on the order of unity and No is the smallest whole

number for which Nohw/Zn = Uy i.e., N, is the number of photons required

for ionization.
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Appendix B: Electron Collision Frequency

As the electrons in the weakly ionized gas or plasma oscillate under
the influence of the optical field, they collide with the background
electrons, ions and neutral atoms. The electron collision frequency for

momentum transfer is

Vo = Vei * Ven? | (B1)

wvhere Vei (ven) is the electron-ion (electron-neutral) collision frequency.
The electron-electron collision frequency does not contribute to v because
the momentum of any pair of colliding electrons and associated current
(masses and charges are identical) are conserved. Electrons colliding vith
electrons will therefore be accelerated on average as if the collision
frequency were zero. Electron-electron collisions, however, lead to
thermalization of the electrons.

The electron-ion collision frequency is given byl‘6

v. =4 x 10~ %nA .n.2?
el 1

372
ei [eV], (B2)

e~
os
where 17.n/\.ei is the Coulomb logarithm, (typically, fz.n/\.ei = 10-20), Z is the
ion charge state, n, is the ion density, niZ is the electron plasma density
and €os is the electron oscillation energy in units of eV.

The electron-neutral collision frequency is given by33'35

Ven = <vennuen(ve)>, (B3)

where n is the electron-neutral cross-section, Ve is the electron
velocity and the brackets < > denote an averaging over the electron
velocity distribution. The electron-neutral cross-section is generally a
complicated function of the electron velocity. At low electron velocities
the cross-section is hard-sphere-like and independent of velocity, Oan = ©

o
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vhere o ~ 10—15 c:m-3 is the hard-sphere cross-section. As the electron

velocity approaches the characteristic atomic electron velocity,
polarization scattering is the dominant process and Oen © l/ve. The
characteristic atomic electron velocity is Vo = agc where o = 1/137 is the
fine structure constant and the characteristic electron energy mvi/Z is

13.6 eV. At substantially higher electron velocities the scattering

becomes Coulomb-like and Oon ~ 1/vg. The electron-neutral collision

f i ~
requency can therefore be estimated to be Ven = Mn%Vos for Vos < Vo and

vV =nov forv > v, where v._ is the electron oscillation velocity.
en noo os 0 0s

Typically, the electron-neutral collisions is the dominant collisional

process in weakly ionized gases. As an example, consider the case where

the neutral density is n.= 3 x 1019 cm_3 and the electron oscillation

3 2

velocity is v__ =qE /mw =5 x 10 "7¢c (¢ _ =mv__/2 = 6.3 eV). For a
s 0 os os

o
linearly polarized laser of wavelength X = 1 um, these parameters

13 W/cm2 and peak electric

-15

correspond to a peak intensity of I = 3.5 x 10

8

field amplitude of E_ = 1.6 x 10° V/cm. Taking o = 10 em?, Eq. (B2)

yields an electron-neutral collision frequency of Ven = 7 x 1012 sec—l,
i.e., an electron-neutral collision time of Ten = v;i ~ 140 fsec.
If for the same example, the gas is weakly ionized with n, = 10-3nno =

3 % 1016 cm—3 and the electron oscillation energy is €os = 6.3 eV, the

electron-ion collision frequency from Eq. (B2) for singularly ionized gas

(Z = 1) is Voi = 8 x 1010 sec—l, i.e., an electron-ion collision time of
L v;% = 13 psec. For these parameters the electron-neutral collision

frequency is much greater than the electron-ion collision frequency, Ven >

V..
el

As another example consider the case of a plasma in which all the

atoms are singly ionized, i.e., Z = 1 and n, =n.o is the initial neutral
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density. For a laser intensity of I = 10 V/cm2 and wavelength A = 1 um,

the oscillation energy is € = 0.2 MeV. For a neutral density of n__ =

no
1019 cm-3, the electron-ion collision frequency is Voi = 4 x 106
sec—1 and T . = v’} = 250 nsec.

ei el
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Appendix C: Radiative and Collisional Losses on Accelerated Electrons

In an inverse Cherenkov or a laser-plasma accelerator, the accelerated
electrons interact with both the background electrons and nuclei. This
interaction results in a loss of electron beam energy as well as an
increase in beam emittance. Accelerated electrons traveling through
neutral gas or plasma are scattered by the atomic nuclei and emit
bremsstrahlung. The emission of bremsstrahlung represents a loss in
electron energy. In addition, a highly relativistic electron will lose
energy due to collisions with atomic or plasma electrons.

The rate of change of energy of the accelerated electrons is given by

v /dz = G -G (C1)

acc Grad col’

= qE_ denotes the
c z

where We = (y - 1)mc2 is the electron energy, Gac

) denotes the radiative (collisional)
47,48

accelerating gradient and Grad (GCol

energy loss. The rate of electron energy loss due to bremsstrahlung is

G b’

rad i - We/L (C2)

where

1
22
L, = ((16/3)afnazare£nA) , (C3)

is the radiation damping length. In Eq. (C3), n, is the density of nuclei,

Za is the atomic number, o = anz/hc = 1/137 is the fine structure

2 13

constant, r, = qz/mc = 2.8 x 107 cm is the classical electron radius and

A is a function of the maximum and minimum impact parameters. The choice
of A depends on various factors, such as the electron energy range and
electronic screening effects. For highly relativistic energies, We >> Wc,

-1/3

vhere complete screening occurs, A = 233 Za At lover energies, We <L

.
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Vc, wvhere screening can be neglected, A = y. The critical energy WC

defining these regimes is V = 192 Z—l/3 c2 and typically ¢nA ~ 5 - 10. 1In

19 cm—3) the radiation damping

hydrogen (Za 1) at 1 atm (na = 5.4 x 10

length is Lb = 12 km, where we have taken ¢nA = 5.

For a highly relativistic electron, the energy loss due to collisions

with atomic or plasma electrons is given by the Bethe formula,47’4,8

= 4Mn_r mCZQnB, (C4)

Gcol e

[ ]

where n, = naZa is the total electron density and B is the ratio of the
maximum to minimum impact parameter. The ratio of radiative energy loss

Eq. (C2) to collisional energy loss (C4) is

'yZ

2nA
Grad/Gcol —i-é' ZnB = 1.4 x 10™ W [MeV] (C5)

For an electron traveling through hydrogen (Za = 1) gas or plasma the
radiative energy loss term is larger than the collision loss for energies
above 700 MeV.

In addition, accelerated electrons will undergo small angle scattering

off nuclei, which leads to an increase in the electron beam emittance. The

normalized emittance of the electron beam is given byAs R<92>1/2, wvhere
R is the rms beam radius and <92>1/2 is the rms divergence angle of the
beam. The rate of growth in the mean square angle is given by

4<62>/dz = 16n2_(2. + 1)n_r2y 2enA (C6)

a‘"a ae !
. . . . 48,49
and the normalized emittance ¢, increases according to
2
de
=2 = v'R%a<eb>/dz = RoL, (c7)
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vhere L—1 = 16n2 (Z_ + 1)n rZQnA. For hydrogen at 1 atm (Z
[ a‘"a ae a

-3

5.4 x 1019 cm ~, and ¢nA = 5), LS = 470 cm.
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Appendix D: Inverse Cherenkov Acceleration with Bessel (Axicon) Beams

In addition to the higher-order Gaussian optical beam discussed in

Sec. IV, an inverse Cherenkov accelerator (ICA) could be driven by a first

7,8

order Bessel optical beam. Both optical beams are axially-symmetric,

radially-polarized and have an axial field peaked along the z-axis.
Nonideal Bessel beams (finite in transverse extent) can be formed using

38,39 Both the nonideal Bessel beam and the higher-order

axicon mirrors.
Gaussian beam diffract, limiting the acceleration distance. For a fixed
total optical beam power, however, the energy gain in an ICA can be
substantially higher when driven by a Bessel optical beam as opposed to a
higher-order Gaussian optical beam. Nonlinear self-focusing in the gas and
the effects of ionization are neglected in the following.

The wvave equation in the paraxial approximation for a radially-

polarized, axially-symmetric field Er propagating in a medium with linear

refractive index n, is

2

0 19 =2 .. (0 19 °
ar—2+ ;5;—1‘ +21k(5'z-+‘7ﬂ)]]3r=0, (D1)

vhere Er = Er(r,z,t)el(kz_wt)/Z + C.C.oy Er is slowly varying in z and t

1

compared with k= and w—l, vV = c/no, k = /v, w = 2nc/X is the frequency

and X\ is the vacuum wavelength. An exact solution to Eq. (D1) which

maintains a constant transverse profile is
E_ = E_J;(k r)exp (1(k - M)z - wt) + coce, (D2)

where J1 is the Bessel function of the first kind of order unity, &k =

2
kl/2k, kl

amplitude. The ideal Bessel field in Eq. (D2) (infinite in transverse

is the transverse wavenumber and Eo is the radial field
extent) is nondiffractingso in the sense that the transverse profile
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remains constant. The power, however, contained within an ideal Bessel
beam is infinite since Ieri(kir)r = o yhen integrated from r = 0 tor = =,

Associated with the radially-polarized field in Eq. (D2) is the axial field

lklEo

B = -

Jo(klr)exp(i(k - k)z - mt) - eee (D3)

The axial accelerating field in Eq. (D3) is peaked along the z-axis and has

axial phase velocity Vph = w/(k - &k),

_ v(1 " (klv/w)Z/Z), (D4)

ph

which can be less than c for n, > 1+ (klc/w)2/2, where it is assumed that
(k c/w)? << 1.

The ideal Bessel beam consists of an infinite number of rings (lobes)
extending radially to infinity and having a radial vidth of r, = n/kl.
Since the asymptotic form (klr >> 1) for the Bessel function is Jl(klr) ~
(2/nklr)1/2cos(klr - 3n/4), the power in each ring is essentially the same.
If the power in each ring is denoted by Po’ then the total power contained
in a nonideal Bessel beam of a finite radial extent Rmax is P = NPO, wvhere

= Rmax/ro is the number of rings. In principle, the number of rings can
be large, N >> 1. A nonideal Bessel beam consisting of N rings diffracts
avay sequentially starting with the outermost ring.51 The outermost fing
diffracts after a distance ~ nrg/k, the next ring diffracts after a
distance 2nr§/k, and so on until the innermost ring diffracts away after a

distance ~ Nnrg/k. Hence, the maximum propagation distance of a nonideal

Bessel beam consisting of N rings of width r, is

Lmax = NZRo’ (D5)
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vhere ZRo = nrg/k is the Rayleigh length associated with the individual
rings, assuming n, = 1.

The maximum energy gain in the ICA driven by a nonideal Bessel beam is

wmax = —qEzoLmax’ (D6)

assuming that the axial phase velocity is matched to the electron velocity,
where Ezo = (kl/k)Eo is the axial accelerating field along the z-axis given
by Eq. (D3). The radial field amplitude in terms of the power within a

ring is
1/2
Eo = (2n/ro)(Po/cno) . (D7)

Using Eqs. (D5) and (D7), the maximum energy gain from Eq. (D6), in terms
. . 1/2,1/2 2 1/2
of the total optical power, is vmax = CoN P , Where C0 = -qn /(cno) .

In practical units,
1/2 1/
v (Mev) = 1.7 N2 [B(aw)] 2 (D8)

for an ICA driven by a nonideal Bessel beam. If a higher-order Gaussian
optical beam of the same total power P were used instead of the nonideal
Bessel beam, the maximum energy gain, Eq. (62), would be Wmax(MeV) =
2.3[P(GV)]1/2. The energy gain in the ICA is ~ Nl/2 times greater for a
nonideal Bessel beam as compared to a higher-order Gaussian beam of the
same total powver.

The ratio of the accelerating gradient for the nonideal Bessel beam,
EzB’ to that of the higher—ordervGauséian beam, EzG’ is EZB/EzG ~
N—1/2

(rso/ro)z, where Teo is the spot size for the higher-order Gaussian

beam.
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